// Import necessary libraries import gab.opencv.*; import processing.video.*; import java.awt.*; // Declare global variables for video capture and OpenCV Capture video; OpenCV opencv; // Variables for face tracking float tx, ty, ts; // Target x, y, and size float sx, sy, ss; // Smoothed x, y, and size void setup() { // Set up the canvas size size( 640 , 480 ); // Initialize the video capture with the specified pipeline video = new Capture( this , 640 , 480 ); // Initialize OpenCV with the same dimensions as the canvas opencv = new OpenCV( this , 640 , 480 ); // Load the frontal face cascade classifier opencv.loadCascade(OpenCV.CASCADE_FRONTALFACE); // Start the video capture video.start(); } void draw() { // Load the current frame from the video into OpenCV opencv.loadImage(video); // Display the video frame on the canvas image(video, 0 , 0 ); // Detect faces in the current frame Rectangle[] faces = opencv.detect(); // If at least one face is detected if (faces.length > 0 ) { // If the detected face is wider than 40 pixels if (faces[ 0 ].width > 40 ) { // Set target values to the center of the detected face and size based on face dimensions tx = faces[ 0 ].x + faces[ 0 ].width / 2 ; ty = faces[ 0 ].y + faces[ 0 ].height / 2 ; ts = (faces[ 0 ].width + faces[ 0 ].height) * 0.3 ; } } // Smoothly interpolate current position and size to the target values sx = lerp(sx, tx, 0.1 ); sy = lerp(sy, ty, 0.1 ); ss = lerp(ss, ts, 0.1 ); // Draw a circle around the face noFill(); stroke( 255 ); // White color strokeWeight( 5 ); // Thickness of the circle circle(sx, sy, ss); // Draw the circle at smoothed coordinates with smoothed size } // Event handler for video capture void captureEvent(Capture c) { c.read(); // Read the new frame from the capture } |
// Import necessary libraries import gab.opencv.*; import processing.video.*; import java.awt.*; Capture video; OpenCV opencv; // Variables to store previous frame for motion detection PImage prevFrame; // Variable to store the amount of motion float motionAmount = 0 ; float smoothedMotionAmount = 0 ; void setup() { // Set up the canvas size size( 640 , 480 ); // Initialize the video capture video = new Capture( this , 640 , 480 ); // Initialize OpenCV with the same dimensions as the canvas opencv = new OpenCV( this , 640 , 480 ); // Start the video capture video.start(); } void draw() { // Load the current frame from the video if (video.available()) { video.read(); opencv.loadImage(video); } // Display the video frame on the canvas image(video, 0 , 0 ); // Check if there is a previous frame if (prevFrame != null ) { // Convert current frame and previous frame to grayscale PImage currFrameGray = createImage(video.width, video.height, RGB); PImage prevFrameGray = createImage(video.width, video.height, RGB); currFrameGray.copy(video, 0 , 0 , video.width, video.height, 0 , 0 , video.width, video.height); prevFrameGray.copy(prevFrame, 0 , 0 , prevFrame.width, prevFrame.height, 0 , 0 , prevFrame.width, prevFrame.height); currFrameGray.filter(GRAY); prevFrameGray.filter(GRAY); // Compute the absolute difference between the current frame and previous frame PImage diffFrame = createImage(video.width, video.height, RGB); diffFrame.loadPixels(); currFrameGray.loadPixels(); prevFrameGray.loadPixels(); int motionPixelCount = 0 ; for ( int i = 0 ; i < diffFrame.pixels.length; i++) { int diff = int (abs(brightness(currFrameGray.pixels[i]) - brightness(prevFrameGray.pixels[i]))); diffFrame.pixels[i] = color(diff); if (diff > 30 ) { // Threshold to consider significant motion motionPixelCount++; } } diffFrame.updatePixels(); // Calculate the motion amount as the percentage of pixels with significant changes motionAmount = ( float )motionPixelCount / diffFrame.pixels.length; // Smooth the motion amount using lerp smoothedMotionAmount = lerp(smoothedMotionAmount, motionAmount* 100 , 0.1 ); // Draw the difference image as an overlay on the original video tint( 255 , 180 ); // Set transparency image(diffFrame, 0 , 0 ); // Display the smoothed motion amount fill( 255 ); textSize( 30 ); text( "MOTION: " + nf(smoothedMotionAmount, 1 , 3 ), 10 , height - 10 ); } // Save the current frame as the previous frame for the next iteration prevFrame = createImage(video.width, video.height, RGB); prevFrame.copy(video, 0 , 0 , video.width, video.height, 0 , 0 , video.width, video.height); } // Event handler for video capture void captureEvent(Capture c) { c.read(); // Read the new frame from the capture } |
—————————–
// Import necessary libraries import gab.opencv.*; import processing.video.*; import java.awt.*; // Declare global variables for video capture and OpenCV Capture video; OpenCV opencv; // Variables for face tracking float tx, ty, ts; // Target x, y, and size float sx, sy, ss; // Smoothed x, y, and size void setup() { // Set up the canvas size size( 640 , 480 ); // Initialize the video capture with the specified pipeline video = new Capture( this , 640 , 480 ); // Initialize OpenCV with the same dimensions as the canvas opencv = new OpenCV( this , 640 , 480 ); // Load the frontal face cascade classifier opencv.loadCascade(OpenCV.CASCADE_FRONTALFACE); // Start the video capture video.start(); } void draw() { // Load the current frame from the video into OpenCV opencv.loadImage(video); // Display the video frame on the canvas image(video, 0 , 0 ); // Detect faces in the current frame Rectangle[] faces = opencv.detect(); // If at least one face is detected if (faces.length > 1 ) { int f1x= faces[ 0 ].x; int f1y= faces[ 0 ].y; int f2x= faces[ 1 ].x; int f2y= faces[ 1 ].y; tx = (f1x + f2x)*. 5 ; ty = (f1y + f2y)*. 5 ; circle(f1x, f2y, 22 ); } sx = lerp(sx,tx, 0.1 ); sy = lerp(sy,ty, 0.1 ); // Draw a circle around the face noFill(); stroke( 255 ); // White color strokeWeight( 5 ); // Thickness of the circle circle(sx, sy, ss); // Draw the circle at smoothed coordinates with smoothed size } // Event handler for video capture void captureEvent(Capture c) { c.read(); // Read the new frame from the capture } |